If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+(X^2+1)+(X^2+4)-50=0
We get rid of parentheses
X^2+X^2+X^2+1+4-50=0
We add all the numbers together, and all the variables
3X^2-45=0
a = 3; b = 0; c = -45;
Δ = b2-4ac
Δ = 02-4·3·(-45)
Δ = 540
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{540}=\sqrt{36*15}=\sqrt{36}*\sqrt{15}=6\sqrt{15}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{15}}{2*3}=\frac{0-6\sqrt{15}}{6} =-\frac{6\sqrt{15}}{6} =-\sqrt{15} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{15}}{2*3}=\frac{0+6\sqrt{15}}{6} =\frac{6\sqrt{15}}{6} =\sqrt{15} $
| 8x+26=25/2 | | x+54=226 | | M=(5x+23) | | 4y=47 | | 5^6r=12 | | 4/13=15/m-3 | | 6y-30=y+15 | | x+22x+34x+2.8=14 | | 1/5b=6+16 | | 9x-8+19=18x-13 | | 6(b+2=30 | | 12/3t=8 | | X^2+(x+1)^2+(x+2)^2=50 | | 20t+4.9t^2=-100 | | 4x-3-6x-12=35 | | 2/1 r−3=3(4−23 r) | | x^2+3/2x=1/2 | | 1/4(16+4p=) | | 3x+9x-5=11 | | 76+15x=140 | | 3x+1000=7x | | 9y+3=-23 | | 7x+11+2-+2+4x-23=180 | | 1,000c+60,000=40,000 | | 1000c+60,000=40,000 | | 27.62=3.4x+-5.7 | | 7x+11+2x+2+4–28=180 | | 6(x-4)+1=6x-23 | | x+9+7=4x-6 | | -1/2(b+2)+36=-1 | | 3(x+7=2(3x+18 | | x+7+3x-17=180 |